Constrained Control Design for Magnetic Bearing Systems
نویسندگان
چکیده
We study control problems in magnetic bearing systems that are subject to both input and state constraints. Apart from the usual restrictions on voltages and currents in the circuit systems, most magnetic bearing systems are subject to a severe state constraint: the motion of the rotor (the suspended object) is only allowed in an extremely small airgap, otherwise the collision of the rotor and the stator would cause severe damages. Traditional methods for avoiding a collision include increasing the airgap and increasing the currents, which would usually result in unnecessarily large capacity of power supply and power loss. In this paper we present a systematic approach for dealing with all the input and state constraints by using some recently developed tools for constrained control design. Issues on the stability region, robustness, disturbance rejections, and transient response are addressed. We hope that by dealing with the constraints properly, safety operation can be ensured with relatively small currents and power consumption. Experiments on the balance beam test rig in our laboratory show that the design techniques are effective. DOI: 10.1115/1.2101850
منابع مشابه
Analysis of Vibration Characteristics of PD Control Active Magnetic Bearing and Cracked Rotor System (RESEARCH NOTE)
Crack fault of rotor is one of the most prominent problems faced by magnetic bearing rotor system. In order to improve the safety performance of this kind of machinery, it is necessary to research the vibration characteristics of magnetic bearing cracked rotor system. In this paper, the stiffness model of the crack shaft element was established by the strain energy release rate (SERR) theory. T...
متن کاملConstrained Controller Design for Real-time Delay Recovery in Metro Systems
This study is concerned with the real-time delay recovery problem in metro loop lines. Metro is the backbone of public transportation system in large cities. A discrete event model for traffic system of metro loop lines is derived and presented. Two effective automatic controllers, linear quadratic regulator (LQR) and model predictive controller (MPC), are used to recover train delays. A newly-...
متن کاملThe Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach
In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...
متن کاملH∞ Robust Controller Design and Experimental Analysis of Active Magnetic Bearings with Flexible Rotor System
H∞ controller for active magnetic bearings (AMBs) with flexible rotor system was designed in this paper. The motion equations of AMBs and flexible rotor system are built based on finite element methods (FEM). Weighting function matrices of H∞ controller for AMBs are studied for both the sensitivity and the complementary sensitivity of H∞ control theory. The simulation shows that the H∞ control ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005